Self-consistent GW Method

Sergey Faleev Mark van Schilfgaarde Takao Kotani Sandia Arizona State Univ. Osaka Univ.

➤ A new kind self-consistent GW (scGW) approximation Self-consistency in charge density n
 Not related to the LDA
 Stay within Landau QP picture — sharp QP spectra "Best possible" mean-field approximation — excellent starting point for DMFT calculations

Apply to:
 NiO, MnO
 Many ZB semiconductors, ZB and others
 Ni,Cu

> Total energies? (Miyake)

GW approximation (Hedin, 1965)

GW Self-energy is

$$\Sigma(r,r',\omega) = \frac{i}{2\pi} \int d\omega' G(r,r',\omega+\omega') e^{i\delta\omega'} W(r'',r',\omega')$$

where

G is the one-particle Green's function

W is the screened Coulomb interaction

$$W(r,r',\omega) = \int dr'' \varepsilon^{-1}(r,r'',\omega) V(r'',r')$$

 $\varepsilon = \text{RPA dielectric function} = (1-vD) \text{ where } D = \text{polarization function}$

Usual GW is non self-consistent: $G \rightarrow G_0$, computed from LDA

$$\left(\omega + \frac{\nabla^2}{2m} - v_{\text{ext}} - v_H - v_{xc}^{\text{LDA}}\right) G_0 = \delta(\mathbf{r} - \mathbf{r}')$$

Implementations of *GW* differ in the following:

- •Choice of basis for one-electron (usu. LDA) wave functions
- •Choice of basis for screened Coulomb interaction W
- Treatment of core
- •Use of plasmon-pole approximation
- •Approximations to potential (e.g. PP; ASA; semilocal Σ)
- •Self-consistency

Present work:

- •LDA basis: smoothed Hankels + local orbitals
- W expanded in IPW + product basis inside MT spheres
- •Core treated on footing similar to valence (HF at lowest level)
- •No plasmon-pole approximation
- •Full-potential treatment (features in common w/ LAPW, PAW)
- New kind of self-consistency

LMTO Basis for All-Electron *GW* method

§Eigenstates expanded as generalized Linear Muffin-Tin Orbitals (both efficient and accurate).

Standard LMTO basis: envelopes $\rightarrow r^{-l}$ as $r\rightarrow 0$ Solves S-eqn for flat $V=V_{MTZ}$.

$$H_{s}(\varepsilon,r) = \frac{1}{r}e^{-\sqrt{-\varepsilon}r}$$

$$(\Delta + \varepsilon)H_L(r_s, \mathbf{r}) = -4\pi G_L(r_s, \mathbf{r}) = -4\pi Y_L(-\nabla)g_0(r_s, r)$$

$$H_L(\varepsilon, r_s, \mathbf{q}) = \frac{-4\pi}{\varepsilon - \mathbf{q}^2} e^{4(\varepsilon - q^2)/r_s^2} Y_L(-i\mathbf{q}) e^{-i\mathbf{q}\cdot\mathbf{R}}$$

Solves Schrodinger eqn for this potential

$$V(\mathbf{r}) = V_{MTZ} - 4\pi G_L(r_s, \mathbf{r}) / H_L(r_s, \mathbf{r})$$

§ Local orbitals can be included to augment linear combinations of ϕ and $\dot{\phi}$ (linear method):

Extra orbitals $\phi_z = \phi(\varepsilon_z) - A\phi - B\dot{\phi}$ can be chosen with A,B s.t.

 $\phi_z(r_{\rm MT})$ =0 and ϕ_z ' $(r_{\rm MT})$ =0 (no interstitial part)

Energy bands accurate over a wide energy window.

Example: GaAs

Blue: this method

(Methfessel and van S.)

Red: old FP-LMTO method

(Methfessel and van S.)

Green: QMTO-ASA

(Andersen) — bands from 2^{nd} gen. ASA V(r).

§Very weak dependence of $E_{tot}(LDA)$, QP levels ε_n on r_{MT} §Very rapid

(like PAW) Future: Better envelope functions: screen; KE →continous at

Basis sets for *GW*

Two independent basis sets are required.

Orbital basis Φ for wave functions. Then

$$G(\mathbf{r}t,\mathbf{r}'t') = \int \frac{d\omega}{2\pi} \sum_{\mathbf{k}} e^{-i\omega(t-t')} \sum_{ij} G_{ij}(\mathbf{k},\omega) \Phi_i^{\mathbf{k}}(\mathbf{r}) \Phi_j^{\mathbf{k}}(\mathbf{r}')$$

Both basis functions Φ_i and eigenstates $\psi_i^{\mathbf{k}n}$ are expanded: in augmented waves ϕ inside MT spheres in plane waves in the interstitial

$$G_{ij}(\mathbf{k},\omega) = \sum_{n} \frac{\psi_{i}^{\mathbf{k}n} \psi_{j}^{*\mathbf{k}n}}{\omega - \varepsilon_{n}^{\mathbf{k}} \mp i\delta}$$

 $\psi_i^{\mathbf{k}n}$ and $\varepsilon_n^{\mathbf{k}}$ are found from solutions of the Schrodinger equation

$$\sum_{j} \left(-\frac{\nabla^{2}}{2m} + v_{\text{ext}} + V_{\text{H}ij}^{\mathbf{k}} + \Sigma_{ij}(\mathbf{k}, \omega) \right) \psi_{j}^{\mathbf{k}n} = \varepsilon_{n}^{\mathbf{k}} \psi_{i}^{\mathbf{k}n}$$

Basis sets for *GW*, continued

§Basis for eigenfunctions (Consider 1st iteration only)

——Labels site, *l*, Eigenfunctions ψ^{kn} expanded in MTO's χ_s other attributes

$$\psi^{\mathbf{k}n}(\mathbf{r}) = \sum_{s} u_{s}^{\mathbf{k}n} \chi_{s}(\mathbf{r})$$

For augmented-waves MTO's χ_s are expanded by:

- local functions ϕ_{RLi} inside MT spheres, i=1..2 or 1..3

• IPW in the interstitial:
$$P_{\mathbf{G}}^{\mathbf{k}}(\mathbf{r}) = \begin{cases} 0 & \text{if } \mathbf{r} \in \text{ any MT sphere} \\ \exp[i(\mathbf{k} + \mathbf{G}) \cdot \mathbf{r}] & \text{otherwise} \end{cases}$$

Local orbital

$$\psi^{kn}(\mathbf{r}) = \sum_{ai} \alpha_{ai}^{kn} \phi_{ai}^{k}(\mathbf{r}) + \sum_{\mathbf{G}} \beta_{\mathbf{G}}^{kn} P_{\mathbf{G}}^{kn}(\mathbf{r})$$

Note: formalism applies equally to LAPW

Basis sets for *GW*, continued

§For
$$v, W$$
 we need $\langle \psi \psi | v | \psi \psi \rangle = \langle \psi \psi | M \rangle \langle M | v | M \rangle \langle M | \psi \psi \rangle$

M = intermediate basis for expansion of products $\psi \psi$.

M: product basis $B = \{\phi \times \phi\}$ inside MT spheres (Aryasetiawan)

Plane waves $P \times P \rightarrow P$ in the interstitial (conventional methods)

Therefore:

A complete basis M for products $\psi \psi$ is: $M = \{P_{\mathbf{G}}^{\mathbf{k}}(\mathbf{r}), B_{I}^{\mathbf{k}}(\mathbf{r})\}$

$$\psi^{kn}(\mathbf{r}) = \sum_{ai} \alpha_{ai}^{kn} \phi_{ai}^{k}(\mathbf{r}) + \sum_{\mathbf{G}} \beta_{\mathbf{G}}^{kn} P_{\mathbf{G}}^{kn}(\mathbf{r})$$

$$\psi^{\mathbf{k}_{1}n_{1}}(\mathbf{r}) \psi^{\mathbf{k}_{2}n_{2}}(\mathbf{r}) = \sum_{ai} B_{RI}^{\mathbf{k}_{1}+\mathbf{k}_{2}}(\mathbf{r}) \times \langle B | \phi \phi \rangle \times \alpha \times \alpha$$

$$+ \sum_{\mathbf{G}} P_{\mathbf{G}}^{\mathbf{k}_{1}+\mathbf{k}_{2}}(\mathbf{r}) \times \langle P | PP \rangle \times \beta \times \beta$$

For a given potential and basis, make these quantities:

Eigenfunctions $\psi_{\mathbf{k}n}$ and eigenvalues $\varepsilon_{\mathbf{k}n}$

Coulomb matrix
$$v_{IJ}(\mathbf{k}) = \langle M_I^{\mathbf{k}} | v | M_J^{\mathbf{k}} \rangle, I = \{RLi, \mathbf{G}\}$$

Eigenfunction products
$$\langle \psi_{\mathbf{q}j} | \psi_{\mathbf{q}-\mathbf{k}i} M_I^{\mathbf{k}} \rangle, I = \{RLi, \mathbf{G}\}$$

Now we can carry out GW cycle. Make : Σ_X , D, W, Σ_C :

Exchange part Σ_X of self-energy

$$\left\langle \mathbf{q}j \middle| \Sigma_{X} \middle| \mathbf{q}j \right\rangle = \sum_{\mathbf{k}}^{BZ} \sum_{i}^{occ} \left\langle \psi_{\mathbf{q}j} \middle| \psi_{\mathbf{q}-\mathbf{k}i} \tilde{M}_{I}^{\mathbf{k}} \right\rangle v_{IJ}(\mathbf{k}) \left\langle \tilde{M}_{J}^{\mathbf{k}} \psi_{\mathbf{q}-\mathbf{k}i} \middle| \psi_{\mathbf{q}j} \right\rangle$$

Where the *M* must be orthogonalized

$$v(\mathbf{r},\mathbf{r}') = \sum_{\mathbf{k},I,J}^{BZ} \left| \tilde{M}_{I}^{\mathbf{k}} \right\rangle v_{IJ}(\mathbf{k}) \left\langle \tilde{M}_{J}^{\mathbf{k}} \right| \qquad \left| \tilde{M}_{I}^{\mathbf{k}} \right\rangle = \sum_{J} \left| M_{J}^{\mathbf{k}} \right\rangle \left\langle M_{J}^{\mathbf{k}} \left| M_{I}^{\mathbf{k}} \right\rangle^{-1}$$

Polarization function D

$$= \sum_{\mathbf{k}}^{\mathrm{BZ}} \sum_{j}^{\mathrm{occ}} \sum_{i}^{\mathrm{unocc}} \langle M_{I}^{\mathbf{k}} \Psi_{\mathbf{q}j} | \Psi_{\mathbf{q}-\mathbf{k}i} \rangle \langle \Psi_{\mathbf{q}j} | \Psi_{\mathbf{q}-\mathbf{k}i} M_{J}^{\mathbf{k}} \rangle$$

$$\times \left(\frac{1}{\omega - \epsilon_{\mathbf{k}j} + \epsilon_{\mathbf{q}-\mathbf{k}i} + i\delta} - \frac{1}{\omega + \epsilon_{\mathbf{k}j} - \epsilon_{\mathbf{q}-\mathbf{k}i} - i\delta} \right)$$

Important technical point:

Fast integration contour for *D*: (Faleev)

- •Tetrahedron method \Rightarrow ImD on real axis.
- •Hilbert transform to get ReD.

Screened Coulomb interaction:
$$W_{IJ}(\mathbf{q},\omega) = (1-vD)^{-1}v$$

Correlation part $\Sigma_{\rm C}$ of self-energy

$$\langle \mathbf{q}n | \Sigma_{C} | \mathbf{q}n \rangle = \sum_{\mathbf{k}}^{BZ} \sum_{n'}^{All} \langle \psi_{\mathbf{q}n} | \psi_{\mathbf{q}-\mathbf{k}n} \tilde{M}_{I}^{\mathbf{k}} \rangle \langle \tilde{M}_{J}^{\mathbf{k}} \psi_{\mathbf{q}-\mathbf{k}n'} | \psi_{\mathbf{q}n} \rangle$$

$$\times \int_{-\infty}^{\infty} \frac{i \, d\omega'}{2\pi} W_{IJ}(\mathbf{k}, \omega') \frac{1}{\omega' - \omega - \varepsilon_{\mathbf{q}-\mathbf{k}i} \pm i\delta}$$

(Use $-i\delta$ for occupied, $+i\delta$ for unoccupied states)

Standard integration contour for Σ :

GW starting from LDA (non self-consistent)

$$\psi_{\mathbf{k}n}^{\mathrm{LDA}}(\mathbf{r}) \text{ and } \varepsilon_{\mathbf{k}n}^{\mathrm{LDA}} \rightarrow \Sigma_{\mathrm{x}}^{nn}, D, W, \Sigma_{\mathrm{c}}^{nn}(\omega)$$

Need diagonal part Σ^{nn} of Σ at QP energies $E_{\mathbf{k}n}$.

$$E_{\mathbf{k}n} = \epsilon_{\mathbf{k}n} + \langle \Psi_{\mathbf{k}n} | \Sigma(\mathbf{r}, \mathbf{r}', E_{\mathbf{k}n}) | \Psi_{\mathbf{k}n} \rangle - \langle \Psi_{\mathbf{k}n} | V_{xc}^{\text{LDA}}(\mathbf{r}) | \Psi_{\mathbf{k}n} \rangle$$

Actually make Σ at LDA $\varepsilon_{\mathbf{k}n}$. Correct by using Z factor.

$$E_{\mathbf{k}n} = \epsilon_{\mathbf{k}n} + Z_{\mathbf{k}n} \times \left[\langle \Psi_{\mathbf{k}n} | \Sigma(\mathbf{r}, \mathbf{r}', \epsilon_{\mathbf{k}n}) | \Psi_{\mathbf{k}n} \rangle - \langle \Psi_{\mathbf{k}n} | V_{xc}^{\text{LDA}}(\mathbf{r}) | \Psi_{\mathbf{k}n} \rangle \right]$$

$$Z_{\mathbf{k}n} = \left[1 - \langle \Psi_{\mathbf{k}n} | \frac{\partial}{\partial \omega} \Sigma(\mathbf{r}, \mathbf{r}', \epsilon_{\mathbf{k}n}) | \Psi_{\mathbf{k}n} \rangle \right]^{-1}$$

Author	Ψ- rep	W-rep	material	Approx-
		=		imations
Aryasetiawan	LAPW	LAPW	Ni	Poor basis
Aryasetiawan	LMTO	Product	d and f	ASA
Ai yasenawan	(ASA)	basis	electrons	ASA
Zein, Antropov	LMTO	Product	d and f	ASA, semilocal
	(ASA)	basis	electrons	No core, self-cons
Hamada	LAPW	PW	Si	No core,
et. al.				Pl. pole
Arnaud	PAW	PW	semi-	No core,
et al			cond.	Pl. pole
Present work	smooth	PW+	d el., semi,	"self-cons"
	LMTO	PB	insulators	
Ku et al	LAPW	PW	Si, Ge	Self-cons

"Conventional wisdom" for QP levels from $\Sigma = G^{LDA}W^{LDA}$ (Wei Ku and A. Eguiluz, PRL **89**, 126401 (2002))

- ➤ Quasiparticle levels are accurate to ~0.1 eV
- > Self-consistency "messes things up"
- ✓ Bandwidth of homogeneous electron gas widens relative to noninteracting case—when it should narrow (Holm and von Barth, PRB **57**, 2108 (1998))
- ✓ Si bandgap ~1.9 eV according to PP calculation: Schone and Eguiluz, PRL 81, 1662 (1998)

 \triangleright Ergo, better to stick with $G^{\text{LDA}}W^{\text{LDA}}$

Semiconductor fundamental gaps, LDA vs GLDA WLDA

Conclusion: $G^{LDA}W^{LDA}$ is dramatically better than LDA Far from 0.1 eV accuracy Gaps systematically too small. InN gap is \sim 0!

Position of cation d levels move closer to experiment ...

But shift is underestimated

A slight k- dispersion to the gap error (Γ - Γ error is slightly less than Γ -X error

What about self-consistency?

True RPA self-consistency: G, Σ satisfy Dyson's equation

$$G = G_0 + G_0 \left(V_H + \Sigma \right) G$$

In general Σ is non-hermitian and energy-dependent.

- Norm conserving in Baym-Kadanoff sense
- •An internally consistent diagrammatic treatment

Drawbacks:

- •Poles of G are not on the real axis
- •If $\Sigma = \Sigma(\omega)$, G partitioned into a QP part and residual satellite part.
 - •The QP part has energy-dependence $Z_i/(\omega \varepsilon_i \pm i\Gamma_i)$
 - •Loss of QP weight by Z (shifted to plasmon-like satellite)
- •Particle-hole pair excitations $P = -iG \times G$ reduced by factor $Z_{\text{occ}} \times Z_{\text{unocc}}$
- •Result: W underscreened; also fails to satisfy f sum rule
- P and W lose physical interpretations: merely intermediate constructions during the scGW cycle.
- •This construction not consistent with Landau's QP theory

A self-consistency consistent with QP picture

We constrain the self-consistency as follows:

•Generate the full energy-dependent $\sum^{nn'} (\omega)$

$$\Sigma^{nn'}(\omega)$$

n refers to basis of eigenstates of generating hamiltonian. Offdiagonal parts also calculated

- •As input to the self-consistency cycle:
 - ✓ Discard the non-hermitian part of Σ
 - ✓ Replace by an energy-independent matrix

$$\Sigma^{nn'} = \begin{cases} \Sigma^{nn'}(\varepsilon_F) + \delta_{nn'}(\Sigma^{nn}(\varepsilon_n) - \Sigma^{nn}(\varepsilon_F)) & \text{mode } 1\\ \frac{1}{2}(\Sigma^{nn'}(\varepsilon_n) + \Sigma^{nn'}(\varepsilon_{n'})) & \text{mode } 2 \end{cases}$$

A self-consistency consistent with QP picture, cont'd

$$\Sigma^{nn'} = \begin{cases} \Sigma^{nn'}(\varepsilon_F) + \delta_{nn'}(\Sigma^{nn}(\varepsilon_n) - \Sigma^{nn}(\varepsilon_F)) & \text{mode } 1\\ \frac{1}{2}(\Sigma^{nn'}(\varepsilon_n) + \Sigma^{nn'}(\varepsilon_{n'})) & \text{mode } 2 \end{cases}$$

In this construction:

- Poles of G are on the real axis compatible with QP picture
- No loss of QP weight
- Mode 1 satisfies f sum rule; mode 2 better at simulating true energy-dependence of Σ . Little difference in practice.
- Reasonable choice for "best possible" QP construction
- Not related to the LDA: only use LDA as a "starting guess"

Drawbacks:

- Not within the Baym-Kadanoff conserving approximation.
- Difference between present construction and the exact theory cannot be expressed as a set of diagrams.

scGW results for GaAs (representative semiconductor)

- •QP levels in excellent agreement with experiment
- •Slight *k* dispersion in error:

 Γ - Γ error \sim 0.15 eV; Γ -X and Γ -L error <0.1eV

- •Ga 3d level shifts to near experimental value (corrects $G^{\text{LDA}}W^{\text{LDA}}$)
- •CB effective mass = 0.074 slightly larger than experiment (0.067)

Semiconductor trends, self-consistent GW results

Near universal:

Γ–Γ slightly overestimated

 Γ –X and Γ –L within \sim 0.1eV of experiment

Compare to other *GW*

	PAW[3]	LAPW[4]		This work		Exp.
	$(GW)^{\mathrm{LDA}}$	$(GW)^{\mathrm{LD}A}$	$^{\Lambda}$ sc GW ($(GW)^{\mathrm{LDA}}$	$\sec GW$	<i>-</i>
E_g	0.92	0.85	1.03	0.92	1.14	1.17
X_{1c}	1.01			1.06	1.30	1.32
L_{1c}	2.05			2.00	2.26	2.04
Γ_{15c}	3.09	3.12	3.48	3.11	3.40	3.38
Γ_{1v}		-12.1	-13.5	-12.1	-12.3	-12.5
$\Gamma_{1v}($	Ge)	-13.1	- 14.8	-12.9	-13.1	-12.6

Cation core levels

scGW results for MnO

- $G^{\text{LDA}}W^{\text{LDA}}$ gap ~1.6 eV (slight improvement on LDA)
- scGW gap =3.5 eV, close to experimental 3.9 ± 0.4 eV
- Conduction band dispersive s-like band
- Mn d levels shift up by ~ 6 eV.

scGW results for NiO

- $G^{LDA}W^{LDA}$: slight improvement on LDA
- scGW gap =4.8 eV, slightly larger than experiment ~4.3 eV
- e_g state gets pushed down relative to LDA
- ARPES valence bands agree well with experiment
- EELS peaks, weights in excellent agreement with experiment

scGW results for Ni (preliminary)

d bands narrow from 4.4 eV (LDA) to 3.9? (scGW). Expt \sim 3.2 eV

Magnetic moments	MnO	NiO	Ni
LDA	4.48	1.28	0.63
scGW	4.76	1.72	0.74
Experiment	4.6	1.9	0.57

Volume dependence of Total energy in Na, LW functional

skip

Conclusions

- \triangleright A new kind of self-consistent *GW* approximation was proposed.
- ➤ Based on results so far, this scheme has been found to be an excellent predictor of many materials properties for weakly moderately correlated materials.
- > In semiconductors:
 - $\checkmark\Gamma$ - Γ excitation systematically slightly overestimated
 - \checkmark A slight *k*-dependence of the gap error
 - ✓ Effective masses in very good agreement with experiment
- > scGW Ni bands narrow (not quite enough?)
- > "QP" scGW does a very good job in explaining many properties of MnO and NiO
 - ✓ ARPES spectra for valence band (NiO)
 - ✓BIS spectra for conduction band and bandgap
 - ✓ Correct positions and weights for EELS (NiO)
 - ✓ Landau QP picture not so bad for MnO, NiO after all!